本連載ではプログラミングの基本は理解しているが、より実践的なデータ解析に取り組みたい方を対象に、スクリプト言語によるデータ解析の実践を解説します。スクリプト言語の中でも特にデータ解析環境が整っているPythonをとりあげ、対話型解析ツールやライブラリによるデータ解析の実行・可視化の方法をを解説します。第4回となる本稿ではPythonによる機械学習を解説します。まず機械学習の概観について確認し、Jupyter Notebookとライブラリscikit-learn使った機械学習の手順を解説します。
米FacebookのPyTorch開発チームは12月7日、Pythonベースの深層学習フレームワーク「PyTorch 1.0 stable」の公開を発表した。 ニュース オープンソース デベロッパー 末岡洋子 関連記事Facebook、Python向け機械学習ライブラリ「PyTorch 1.0」のプレビュー版をリリース
オープンソースの優良プロジェクトを選ぶ「Bossies 2018」発表
米Oracle、機械学習モデルにアクセスするためのプロトコル「GraphPipe」を公開
Python向けスト
米Facebookは10月2日、オープンソースのPython向け機械学習ライブラリ「PyTorch 1.0」のプレビュー版を公開した。 ニュース オープンソース デベロッパー 末岡洋子 AI 関連記事米Oracle、機械学習モデルにアクセスするためのプロトコル「GraphPipe」を公開
ニューラルネットワークツールと推論エンジンの相互運用のためのプロジェクト「NNEF」が仕様を公開
米Uberの研究開発チーム、確率的プログラミング言語「Pyro」をオープンソースで公開
TensorFlowは、Google Brainチームが開発したオープンソースのライブラリで、大規模な機械学習や数値計算に使える。機械学習や深層学習、ニューラルネットワークのさまざまなモデルやアルゴリズムが、共通の抽象化のもとで使いやすくまとまっている。Tensorflowのアプリケーションの開発には、Python用のフロントエンドAPIが提供されている。開発したアプリケーションの実行には、高速なC++が使われる。