takuya: ライブラリ + python (30)

ソート基準 日付 / 題名 / URL

  1. 開発者の間で急上昇中の「Python」人気が収まる気配はなさそうだ。理由は主に、機械学習という成長著しい分野で使用されていることにある。 とはいえ、データサイエンスに対する魅力以上に、Pythonのファンたちによれば、この言語がここまで成功した背景には、広範かつ堅牢なソフトウェアライブラリの存在と習得しやすさがあるという。 現在使用されているPythonには、「Python 2」「Python 3」という大きく2つの種類がある。Python 3のほうがより新しいのは一目瞭然だが、それ以前のバージョンのPy
  2. 本連載ではプログラミングの基本は理解しているが、より実践的なデータ解析に取り組みたい方を対象に、スクリプト言語によるデータ解析の実践を解説します。スクリプト言語の中でも特にデータ解析環境が整っているPythonをとりあげ、対話型解析ツールやライブラリによるデータ解析の実行・可視化の方法をを解説します。第4回となる本稿ではPythonによる機械学習を解説します。まず機械学習の概観について確認し、Jupyter Notebookとライブラリscikit-learn使った機械学習の手順を解説します。
  3. 米FacebookのPyTorch開発チームは12月7日、Pythonベースの深層学習フレームワーク「PyTorch 1.0 stable」の公開を発表した。 ニュース オープンソース デベロッパー 末岡洋子 関連記事Facebook、Python向け機械学習ライブラリ「PyTorch 1.0」のプレビュー版をリリース オープンソースの優良プロジェクトを選ぶ「Bossies 2018」発表 米Oracle、機械学習モデルにアクセスするためのプロトコル「GraphPipe」を公開 Python向けスト
  4. 米Microsoftは12月4日、機械学習のための高性能な推論インターフェイスエンジン「Open Neural Network Exchange(ONNX)Runtime」をオープンソースで公開した。WindowsおよびmacOS、Linuxで利用できる。 ニュース オープンソース デベロッパー プログラミング 開発ツール フレームワーク 末岡洋子 関連記事米Microsoft、機械学習フレームワーク「Infer.NET」をオープンソースに Facebook、Python向け機械学習ライブラリ「PyTo
  5. Pythonで数値計算を行なうためのライブラリであるNumPyでは、多次元配列を基本的なデータ構造として操作します。この独自のデータ構造を「ndarray」といい、知っておくことでデータ処理の際に高速化や省メモリ化したコードを書けるようになります。今回は『現場で使える!NumPyデータ処理入門』(翔泳社)からndarrayの基礎を紹介します。
  6. 本稿ではプログラミングの基本は理解しているがより実践的なデータ解析に取り組みたい方を対象に、スクリプト言語によるデータ解析の実践を解説します。スクリプト言語の中でも特にデータ解析に役立つライブラリや環境が整っているPythonをとりあげ、対話型解析ツールやライブラリについて導入から解析の実行・可視化までを解説します。本稿ではPythonによる統計データ解析を解説します。まず統計の概観について確認し、Jupyter Notebookを使った基本統計量の確認・相関・検定の手順を解説します。
  7. 米Facebookは10月2日、オープンソースのPython向け機械学習ライブラリ「PyTorch 1.0」のプレビュー版を公開した。 ニュース オープンソース デベロッパー 末岡洋子 AI 関連記事米Oracle、機械学習モデルにアクセスするためのプロトコル「GraphPipe」を公開 ニューラルネットワークツールと推論エンジンの相互運用のためのプロジェクト「NNEF」が仕様を公開 米Uberの研究開発チーム、確率的プログラミング言語「Pyro」をオープンソースで公開
  8. 本連載では、プログラミングの基本は理解していて、より実践的なデータ解析に取り組みたい方を対象に、スクリプト言語によるデータ解析の実践を解説します。スクリプト言語のなかでも特にデータ解析に役立つライブラリや環境が整っているPythonを取り上げ、対話型解析ツールやライブラリについて導入から解析の実行・可視化までを解説します。本稿ではブラウザで動作するOSSの対話型データ解析ツール「Jupyter Notebook」を紹介します。導入から実際にPythonとライブラリを用いたデータ解析の実行、可視化までの手順
  9. TensorFlowは、Google Brainチームが開発したオープンソースのライブラリで、大規模な機械学習や数値計算に使える。機械学習や深層学習、ニューラルネットワークのさまざまなモデルやアルゴリズムが、共通の抽象化のもとで使いやすくまとまっている。Tensorflowのアプリケーションの開発には、Python用のフロントエンドAPIが提供されている。開発したアプリケーションの実行には、高速なC++が使われる。
  10. ここ数年、エンジニアの間で、もっとも話題に上ったプログラミング言語は何でしょうか?それは、間違いなくPythonです。先日発表された、PCIのランキングでも、JavaやC/C++に次いで堂々の4位を獲得しています。私事で恐縮ですが筆者も、ここ数年Pythonに関する書籍を何冊も執筆しました。先日も上梓させてもらったばかりです(ゼロからやさしくはじめるPython入門/マイナビ出版)し、Pythonでデータを取得し機械学習を行うスクレイピングに関する「Pythonによるスクレイピング&機械学習 開発テクニッ
  11. pyvenvについて書いてあるけど,pythone3.6などではpythone3 -m venv を使う
    updated: 2017-06-02, original: 2017-06-02 to , ,

最初へ / 前へ / 次へ / 最後へ / ページ(1/1)